
Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 1

UNIT-VI

NP Hard and NP complete problems: Nondeterministic algorithms, The classes NP hard

and NP complete; NP hard graph problems - Clique decision problem (CDP).

PRAM Algorithms: Introduction, Computational Model.

NP-Hard and NP-Complete problems

Deterministic and non-deterministic algorithms

Deterministic: The algorithm in which every operation is uniquely defined is called

deterministic algorithm.

Non-Deterministic: The algorithm in which the operations are not uniquely defined but

are limited to specific set of possibilities for every operation, such an algorithm is called
non-deterministic algorithm.

The non-deterministic algorithms use the following functions:

1. Choice: Arbitrarily chooses one of the element from given set.

2. Failure: Indicates an unsuccessful completion

3. Success: Indicates a successful completion

A non-deterministic algorithm terminates unsuccessfully if and only if there exists no

set of choices leading to a success signal. Whenever, there is a set of choices that leads to

a successful completion, then one such set of choices is selected and the algorithm

terminates successfully.

In case the successful completion is not possible, then the complexity is O(1). In case of

successful signal completion then the time required is the minimum number of steps

needed to reach a successful completion of O(n) where n is the number of inputs.

The problems that are solved in polynomial time are called tractable problems and the

problems that require super polynomial time are called non-tractable problems. All

deterministic polynomial time algorithms are tractable and the non-deterministic

polynomials are intractable.

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 2

j

Satisfiability Problem:

The satisfiability is a boolean formula that can be constructed using the

following literals and operations.

1. A literal is either a variable or its negation of the variable.

2. The literals are connected with operators ˅, ˄͢, ⇒ , ⇔

3. Parenthesis

The satisfiability problem is to determine whether a Boolean formula is true

for some assignment of truth values to the variables. In general, formulas are

expressed in Conjunctive Normal Form (CNF).

A Boolean formula is in conjunctive normal form iff it is represented by
(xi ∨ xj ∨ xk

1) 𝖠 (xi ∨ x 1 ∨ xk)

A Boolean formula is in 3CNF if each clause has exactly 3 distinct literals.

Example:

The non-deterministic algorithm that terminates successfully iff a given

formula E(x1,x2,x3) is satisfiable.

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 3

Reducability:

A problem Q1 can be reduced to Q2 if any instance of Q1 can be easily rephrased as an

instance of Q2. If the solution to the problem Q2 provides a solution to the problem Q1,

then these are said to be reducable problems.

Let L1 and L2 are the two problems. L1 is reduced to L2 iff there is a way to solve L1 by

a deterministic polynomial time algorithm using a deterministic algorithm that solves L2

in polynomial time and is denoted by L1α L2.

If we have a polynomial time algorithm for L2 then we can solve L1 in polynomial time.

Two problems L1 and L2 are said to be polynomially equivalent iff L1α L2 and L2 α L1.

Example: Let P1 be the problem of selection and P2 be the problem of sorting. Let the

input have n numbers. If the numbers are sorted in array A[] the ith smallest element of

the input can be obtained as A[i]. Thus P1 reduces to P2 in O(1) time.

Decision Problem:

Any problem for which the answer is either yes or no is called decision problem. The

algorithm for decision problem is called decision algorithm.

Example: Max clique problem, sum of subsets problem.

Optimization Problem: Any problem that involves the identification of an optimal value

(maximum or minimum) is called optimization problem.

Example: Knapsack problem, travelling salesperson problem.

In decision problem, the output statement is implicit and no explicit statements are

permitted.

The output from a decision problem is uniquely defined by the input parameters and

algorithm specification.

Many optimization problems can be reduced by decision problems with the property that

a decision problem can be solved in polynomial time iff the corresponding optimization

problem can be solved in polynomial time. If the decision problem cannot be solved in

polynomial time then the optimization problem cannot be solved in polynomial time.

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 4

Class P:

P: the class of decision problems that are solvable in O(p(n)) time, where p(n) is a

polynomial of problem’s input size n

Examples:

• searching

• element uniqueness

• graph connectivity

• graph acyclicity

• primality testing

Class NP

NP (nondeterministic polynomial): class of decision problems whose proposed

solutions can be verified in polynomial time = solvable by a nondeterministic

polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage procedure that:

• generates a random string purported to solve the problem

• checks whether this solution is correct in polynomial time

By definition, it solves the problem if it’s capable of generating and verifying a

solution on one of its tries

Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal form (CNF) satisfiable, i.e.,

are there values of its variables that makes it true? This problem is in NP.

Nondeterministic algorithm:

• Guess truth assignment

• Substitute the values into the CNF formula to see if it evaluates to true

What problems are in NP?

• Hamiltonian circuit existence

• Partition problem: Is it possible to partition a set of n integers into two

disjoint subsets with the same sum?

• Decision versions of TSP, knapsack problem, graph coloring, and many other

combinatorial optimization problems. (Few exceptions include: MST, shortest

paths)

• All the problems in P can also be solved in this manner (but no guessing is

necessary), so we have:

P NP

• Big question: P = NP ?

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 5

NP HARD AND NP COMPLETE

Polynomial Time algorithms

Problems whose solutions times are bounded by polynomials of small degree are called
polynomial time algorithms

Example: Linear search, quick sort, all pairs shortest path etc.

Non- Polynomial time algorithms

Problems whose solutions times are bounded by non-polynomials are called non-

polynomial time algorithms

Examples: Travelling salesman problem, 0/1 knapsack problem etc

It is impossible to develop the algorithms whose time complexity is polynomial for

non-polynomial time problems, because the computing times of non-polynomial are

greater than polynomial. A problem that can be solved in polynomial time in one model

can also be solved in polynomial time.

NP-Hard and NP-Complete Problem:

Let P denote the set of all decision problems solvable by deterministic algorithm in

polynomial time. NP denotes set of decision problems solvable by nondeterministic

algorithms in polynomial time. Since, deterministic algorithms are a special case of

nondeterministic algorithms, P ⊆ NP. The nondeterministic polynomial time problems

can be classified into two classes. They are

1. NP Hard and

2. NP Complete

NP-Hard: A problem L is NP-Hard iff satisfiability reduces to L i.e., any

nondeterministic polynomial time problem is satisfiable and reducable then the problem

is said to be NP-Hard.

Example: Halting Problem, Flow shop scheduling problem

NP-Complete: A problem L is NP-Complete iff L is NP-Hard and L belongs to NP

(nondeterministic polynomial).

A problem that is NP-Complete has the property that it can be solved in polynomial time

iff all other NP-Complete problems can also be solved in polynomial time. (NP=P)

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 6

If an NP-hard problem can be solved in polynomial time, then all NP- complete problems
can be solved in polynomial time. All NP-Complete problems are NP-hard, but some NP-

hard problems are not known to be NP- Complete.

Normally the decision problems are NP-complete but the optimization problems are NP-

Hard.

However if problem L1 is a decision problem and L2 is an optimization problem, then it is

possible that L1α L2.

Example: Knapsack decision problem can be reduced to knapsack
optimization problem.

There are some NP-hard problems that are not NP-Complete.

Relationship between P,NP,NP-hard, NP-Complete

Let P, NP, NP-hard, NP-Complete are the sets of all possible decision problems that are

solvable in polynomial time by using deterministic algorithms, non-deterministic

algorithms, NP-Hard and NP-complete respectively. Then the relationship between P,

NP, NP-hard, NP-Complete can be expressed using Venn diagram as:

Problem conversion

A decision problem D1 can be converted into a decision problem D2 if there is an

algorithm which takes as input an arbitrary instance I1 of D1 and delivers as output an

instance I2 of D2such that I2 is a positive instance of D2 if and only if I1 is a positive

instance of D1. If D1 can be converted into D2, and we have an algorithm which solves

D2, then we thereby have an algorithm which solves D1. To solve an instance I of D1,

we first use the conversion algorithm to generate an instance I0 of D2, and then use the

algorithm for solving D2 to determine whether or not I0 is a positive instance of D2. If it

is, then we know that I is a positive instance of D1, and if it is not, then we know that I is

a negative instance of D1. Either way, we have solved D1 for that instance. Moreover, in

this case, we can say that the computational complexity of D1 is at most the sum of the

computational complexities of D2 and the conversion algorithm. If the conversion

algorithm has polynomial complexity, we say that D1 is at most polynomially harder than

D2. It means that the amount of computational work we have to do to solve D1, over and

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 7

above whatever is required to solve D2, is polynomial in the size of the problem instance. In

such a case the conversion algorithm provides us with a feasible way of solving D1, given

that we know how to solve D2.

Given a problem X, prove it is in NP-Complete.

1. Prove X is in NP.

2. Select problem Y that is known to be in NP-Complete.

3. Define a polynomial time reduction from Y to X.

4. Prove that given an instance of Y, Y has a solution iff X has a solution.

NP-Hard Graph Problems

Clique Decision Problem

Definition: - It is a sub graph of the given graph which is complete.

In Clique, every vertex is directly connected to another vertex, and the number of vertices in the

Clique represents the Size of Clique.

Maximal Clique:

Clique is a maximal complete sub-graph of a graph G = (V,E), that is a subset of vertices

in V all connected to each other by edges in E (i.e., forming a complete graph).

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 8

The Size of a clique is the number of vertices in it. The Maximal clique problem is an

optimization problem that has to determine the size of a largest clique in G. A decision problem

is to determine whether G has a clique of size at least ‘k’.

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 9

Parallel Random Access Machines (PRAM)

Parallel Random Access Machines (PRAM) is a model, which is considered for

most of the parallel algorithms. Here, multiple processors are attached to a single

block of memory. A PRAM model contains −

A set of similar type of processors.

All the processors share a common memory unit. Processors can communicate

among themselves through the shared memory only.

A memory access unit (MAU) connects the processors with the single shared

memory.

Here, n number of processors can perform independent operations on n number of

data in a particular unit of time. This may result in simultaneous access of same

memory location by different processors.

To solve this problem, the following constraints have been enforced on PRAM model

−

Exclusive Read Exclusive Write (EREW) − Here no two processors are

allowed to read from or write to the same memory location at the same time.

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 10

Exclusive Read Concurrent Write (ERCW) − Here no two processors are

allowed to read from the same memory location at the same time, but are

allowed to write to the same memory location at the same timeoncurrent

Read Exclusive Write (CREW) − Here all the processors are allowed to read

from the same memory location at the same time, but are not allowed to write

to the same memory location at the same time.

Concurrent Read Concurrent Write (CRCW) − All the processors are

allowed to read from or write to the same memory location at the same time.

There are many methods to implement the PRAM model, but the most prominent

ones are −

 Shared memory model

 Message passing model

 Data parallel model

Shared Memory Model

Shared memory emphasizes on control parallelism than on data parallelism. In the

shared memory model, multiple processes execute on different processors

independently, but they share a common memory space. Due to any processor activity,

if there is any change in any memory location, it is visible to the rest of the processors.

As multiple processors access the same memory location, it may happen that at any

particular point of time, more than one processor is accessing the same memory

location. Suppose one is reading that location and the other is writing on that location.

It may create confusion. To avoid this, some control mechanism, like lock /

semaphore, is implemented to ensure mutual exclusion.

Shared memory programming has been implemented in the following −

Thread libraries − The thread library allows multiple threads of control that

run concurrently in the same memory location. Thread library provides an

interface that supports multithreading through a library of subroutine. It

contains subroutines for

 Creating and destroying threads

 Scheduling execution of thread

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 11

 passing data and message between threads

 saving and restoring thread contexts

Examples of thread libraries include − SolarisTM threads for Solaris, POSIX threads

as implemented in Linux, Win32 threads available in Windows NT and Windows

2000, and JavaTM threads as part of the standard JavaTM Development Kit (JDK).

Distributed Shared Memory (DSM) Systems − DSM systems create an

abstraction of shared memory on loosely coupled architecture in order to

implement shared memory programming without hardware support. They

implement standard libraries and use the advanced user-level memory

management features present in modern operating systems. Examples include

Tread Marks System, Munin, IVY, Shasta, Brazos, and Cashmere.

Program Annotation Packages − This is implemented on the architectures

having uniform memory access characteristics. The most notable example of

program annotation packages is OpenMP. OpenMP implements functional

parallelism. It mainly focuses on parallelization of loops.

The concept of shared memory provides a low-level control of shared memory system,

but it tends to be tedious and erroneous. It is more applicable for system programming

than application programming.

Merits of Shared Memory Programming

Global address space gives a user-friendly programming approach to memory.

Due to the closeness of memory to CPU, data sharing among processes is fast

and uniform.

There is no need to specify distinctly the communication of data among

processes.

Process-communication overhead is negligible.

It is very easy to learn.

Demerits of Shared Memory Programming

 It is not portable.

 Managing data locality is very difficult.

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 12

Message Passing Model

Message passing is the most commonly used parallel programming approach in

distributed memory systems. Here, the programmer has to determine the parallelism.

In this model, all the processors have their own local memory unit and they exchange

data through a communication network.

Processors use message-passing libraries for communication among themselves.

Along with the data being sent, the message contains the following components −

The address of the processor from which the message is being sent;

Starting address of the memory location of the data in the sending processor;

Data type of the sending data;

Data size of the sending data;

The address of the processor to which the message is being sent;

Starting address of the memory location for the data in the receiving processor.

Processors can communicate with each other by any of the following methods −

 Point-to-Point Communication

 Collective Communication

 Message Passing Interface

Point-to-Point Communication

Point-to-point communication is the simplest form of message passing. Here, a

message can be sent from the sending processor to a receiving processor by any of the

following transfer modes −

Synchronous mode − The next message is sent only after the receiving a

confirmation that its previous message has been delivered, to maintain the

sequence of the message.

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 13

Asynchronous mode − To send the next message, receipt of the confirmation

of the delivery of the previous message is not required.

Merits of Message Passing

 Provides low-level control of parallelism;

 It is portable;

 Less error prone;

 Less overhead in parallel synchronization and data distribution.

Demerits of Message Passing

As compared to parallel shared-memory code, message-passing code generally

needs more software overhead.

 Message Passing Interface (MPI)

 Parallel Virtual Machine (PVM)

Message Passing Interface (MPI)

It is a universal standard to provide communication among all the concurrent

processes in a distributed memory system. Most of the commonly used parallel

computing platforms provide at least one implementation of message passing

interface. It has been implemented as the collection of predefined functions

called library and can be called from languages such as C, C++, Fortran, etc. MPIs

are both fast and portable as compared to the other message passing libraries.

Merits of Message Passing Interface

Runs only on shared memory architectures or distributed memory architectures;

Each processors has its own local variables;

As compared to large shared memory computers, distributed memory

computers are less expensive.

Demerits of Message Passing Interface

 More programming changes are required for parallel algorithm;

 Sometimes difficult to debug; and

 Does not perform well in the communication network between the nodes.

Parallel Virtual Machine (PVM)

PVM is a portable message passing system, designed to connect separate

heterogeneous host machines to form a single virtual machine. It is a single

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 14

manageable parallel computing resource. Large computational problems like

superconductivity studies, molecular dynamics simulations, and matrix algorithms can

be solved more cost effectively by using the memory and the aggregate power of

many computers. It manages all message routing, data conversion, task scheduling in

the network of incompatible computer architectures.

Features of PVM

 Very easy to install and configure;

 Multiple users can use PVM at the same time;

 One user can execute multiple applications;

 It’s a small package;

 Supports C, C++, Fortran;

 For a given run of a PVM program, users can select the group of machines;

 It is a message-passing model,

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 15

 Process-based computation;

 Supports heterogeneous architecture.

 Arrays

 Hypercube Network

Hypercube Network

Hypercube architecture is helpful for those parallel algorithms where each task has to

communicate with other tasks. Hypercube topology can easily embed other topologies

such as ring and mesh. It is also known as n-cubes, where n is the number of

dimensions. A hypercube can be constructed recursively.

Prepared by Mrs. B.Rajani & Mrs. C.Jyothsna DEPARTMENT OF CSE 16

	UNIT-VI
	NP-Hard and NP-Complete problems
	Deterministic and non-deterministic algorithms
	Satisfiability Problem:
	Reducability:
	Decision Problem:
	What problems are in NP?
	NP HARD AND NP COMPLETE
	Non- Polynomial time algorithms
	NP-Hard and NP-Complete Problem:
	Relationship between P,NP,NP-hard, NP-Complete
	Problem conversion

	Parallel Random Access Machines (PRAM)
	Shared Memory Model
	Merits of Shared Memory Programming
	Demerits of Shared Memory Programming
	Message Passing Model
	Point-to-Point Communication
	Merits of Message Passing
	Demerits of Message Passing
	Message Passing Interface (MPI)
	Merits of Message Passing Interface
	Demerits of Message Passing Interface
	Parallel Virtual Machine (PVM)
	Features of PVM
	Hypercube Network

